我的位置:

干货!两万字长文带你走近神秘的量子纠缠

发布人:管理员

不管学哪个行业,大概都听说过奇妙的量子现象。诸如测不准原理 [1]、薛定谔的猫 [2]之类,在日常生活中看起来匪夷所思的现象,却是千真万确存在于微观的量子世界中。

许多人将听起来有些诡异的量子理论视为天书,从而敬而远之。有人感叹说:“量子力学,太不可思议了,不懂啊,晕!”不懂量子力学,听了就晕,那是非常正常的反应。听听诺贝尔物理学奖得主、大物理学家费曼的名言吧。费曼说:“我想我可以有把握地讲,没有人懂量子力学![3] ”量子论的另一创始人玻尔 (Niels Bohr) 也说过:“如果谁不为量子论而感到困惑,那他就是没有理解量子论[4]。”既然连费曼和玻尔都这样说,我等就更不敢吹牛了。因此,我们暂时不要奢望“懂得”量子力学。此一系列文章的目的是让我们能够多了解、多认识一些量子力学。也许不能“走进”,但却能“走近”。因为量子力学虽然神秘,却是科学史上最为精确地被实验检验了的理论,量子力学经历了100 多年的艰难历史,发展至今,可说是到达了人类智力征程上的最高成就。身为现代人,如果不曾了解一点点量子力学,就如同没有上过因特网,没有写过邮件一样,可算是人生的一大遗憾。

刚才提及量子现象时,说到了“薛定谔的猫”,我们的讨论可由此开始。

干货!两万字长文带你走近神秘的量子纠缠

奥地利物理学家薛定谔, 出生于 1887 年

薛定谔 (E. Schrödinger,1887—1961) 是奥地利著名物理学家、量子力学的创始人之一,曾获 1933 年诺贝尔物理学奖。在量子力学中,有一个最基本的描述原子、电子等微观粒子运动的薛定谔方程,就是以他而命名的。薛定谔生于维也纳,死于维也纳,但死后如愿被葬于阿尔卑巴赫 (Alpbach) 村,一个风景优美的小山村中。他的墓碑上刻着一个大大的量子力学中波函数的符号 ψ ,而在他曾经就学的维也纳大学主楼里,有一座薛定谔的胸像,那上面雕刻着著名的薛定谔方程

“薛定谔的猫” 又是什么呢?它不是薛定谔家里的猫,而是薛定谔在一篇论文中提出的一个佯谬,也被称为“薛定谔佯谬”。薛定谔虽然创立了薛定谔方程,却非常不满意正统的哥本哈根诠释对波函数及叠加态的几率解释。于是,薛定谔便设计了一个思想实验,在这个实验中,他把量子力学中的反直观效果转嫁到日常生活中的事物上来,也就是说,转嫁到“猫”的身上,如此而导致了一个荒谬的结论。薛定谔想以此来嘲笑对手。

叠加态

既然“薛定谔的猫”与叠加态有关,那么,首先我们需要了解,什么是叠加态?根据我们的日常经验,一个物体在某一时刻总会处于某个固定的状态。比如我说,女儿现在“在客厅”里,或是说,女儿现在“在房间”里。要么在客厅,要么在房间,这两种状态,必居其一。这种说法再清楚不过了。然而,在微观的量子世界中,情况却有所不同。微观粒子可以处于一种所谓叠加态的状态,这种叠加状态是不确定的。例如,电子有“上”、“下”两种自旋本征态,犹如女孩可以“在”和“不在”房间。但不同之处是,女孩只能“在”或“不在”,电子却可以同时是“上”和“下”。也就是说,电子既是“上”,又是“ 下”。电子的自旋状态是“上”和“下”按一定几率的叠加。物理学家们把电子的这种混合状态,叫做叠加态。

总结一下,什么是叠加态呢?就好比是说,女儿“既在客厅,又在房间”,这种日常生活中听起来逻辑混乱的说法,却是量子力学中粒子所遵循的根本之道,不是很奇怪吗?聪明的读者会说:“女儿此刻‘在客厅’或‘在房间’,同时打开客厅和房间的门,看一眼就清楚了。电子自旋是上,或是下,测量一下不就知道了吗?” 说得没错,但奇怪的是,当我们对电子的状态进行测量时,电子的叠加态不复存在,它的自旋坍缩到“上”,或是“下”,两个本征状态的其中之一。听起来好像和我们日常生活经验差不多嘛!但是,请等一等!我们说的微观行为与宏观行为之不同,是在于观测之前。即使父母不去看,女儿在客厅或房间,已成事实,并不以“看”或“不看”而转移。而微观电子就不一样了:在观察之前的状态,并无定论,是“既是……,又是……”的叠加状态,直到我们去测量它,叠加状态才坍缩成一个确定的状态(本征态)。这是微观世界中量子叠加态的奇妙特点。

尽管量子现象显得如此神秘,量子力学的结论却早已在诸多方面被实验证实,被学术界接受,在各行各业还得到各种应用,量子物理学对我们现代日常生活的影响无比巨大。以其为基础产生的电子学革命及光学革命将我们带入了如今的计算机信息时代。可以说,没有量子力学,就不会有今天所谓的高科技产业。

如何解释量子力学的基本理论,仍然是见仁见智,莫衷一是。这点也曾经深深地困扰着它的创立者们,包括伟大的爱因斯坦。微观叠加态的特点与宏观规律如此不同,物理学家(例如薛定谔)也想不通。于是,薛定谔在1935 年发表了一篇论文,题为《量子力学的现状》,在论文的第5 节,薛定谔编出了一个“薛定谔的猫”的理想实验,试图将微观不确定性变为宏观不确定性,微观的迷惑变为宏观的佯谬,以引起大家的注意。果不其然!物理学家们对此佯谬一直众说纷纭、争论至今。

著名的薛定谔的猫

干货!两万字长文带你走近神秘的量子纠缠

薛定谔假想“薛定谔的猫”实验

以下是“薛定谔的猫”的实验描述:把一只猫放进一个封闭的盒子里,然后把这个盒子连接到一个装置,其中包含一个原子核和毒气设施。设想这个原子核有 50% 的可能性发生衰变。衰变时发射出一个粒子,这个粒子将会触发毒气设施,从而杀死这只猫。根据量子力学的原理,未进行观察时,这个原子核处于已衰变和未衰变的叠加态,因此,那只可怜的猫就应该相应地处于“死”和“活”的叠加态。非死非活,又死又活,状态不确定,直到有人打开盒子观测它。

实验中的猫,可类比于微观世界的电子(或原子)。在量子理论中,电子可以不处于一个固定的状态(上或下),而是同时处于两种状态的叠加(上和下)。如果把叠加态的概念用于猫的话,那就是说,处于叠加态的猫是半死不活、又死又活的。

量子理论认为:如果没有揭开盖子,进行观察,薛定谔的猫的状态是“死”与“活”的叠加。此猫将永远处于同时是死又是活的叠加态。这与我们的日常经验严重相违。一只猫,要么死,要么活,怎么可能不死不活、半死半活呢?别小看这一个听起来似乎荒谬的物理思想实验(Gedankenexperiment,想象的实验)。它不仅在物理学方面极具意义,在哲学方面也引申了很多的思考。

谈到哲学,聪明的读者又要笑了,因为在古代哲学思想中,不乏这种似是而非、模棱两可的说法。这不就是辩证法的思想吗?你中有我,我中有你,一就是二,二就是一,合二而一,天人合一,等等,如此而已。此话不假,因此才有人如此来比喻“薛定谔的猫”:男女在开始恋爱前,不知道结果是好或者不好,这时,可以将恋爱结果看成好与不好的混合叠加状态。如果你想知道结果,唯一的方法是去试试看,但是,只要你试过,你就已经改变了原来的结果了!

无论从人文科学的角度如何来诠释和理解“薛定谔的猫”,人们仍然觉得量子理论听起来有些诡异。有读者可能会说:“你拉扯了半天,我仍然不懂量子力学啊!”还好,刚才我们已经给读者打了预防针,不是吗?没有人懂量子力学,包括薛定谔自己在内!薛定谔的本意是要用“薛定谔的猫”这个实验的荒谬结果,来嘲笑哥本哈根学派对量子力学、对薛定谔方程引进的“波函数”概念的几率解释,但实际上,这个假想实验使薛定谔站到了自己奠基的理论的对立面上,难怪有物理学家调侃地说到:“薛定谔不懂薛定谔方程!”

不止量子

薛定谔不仅对量子力学有巨大的贡献,他还写过一本生物学方面的书和许多科普文章。1944年,他出版了《生命是什么》[5]一书。此书中薛定谔自己发展了分子生物学, 提出了负熵的概念,他想通过物理的语言来描述生物学中的课题。之后发现了DNA 双螺旋结构的瓦森 (James D. Watson) 与克里克 (Francis Crick) 都表示曾经深受薛定谔这本书的影响。

据说薛定谔在科学上的这些成就与他的私生活还有着紧密的联系。薛定谔应该具有超凡的个人魅力, 一生风流倜傥, 女友无数。他的风流故事甚至诱发了现代舞台剧编导、纽约剧作家马修韦尔斯的灵感,写出了一部名为《薛定谔的女朋友》的舞台剧。

干货!两万字长文带你走近神秘的量子纠缠

舞台剧《薛定谔的女朋友》演出时的剧照 (左) 和海报(右)

这部舞台剧是关于爱、性和量子物理学的另类浪漫喜剧。剧中的女主人公是位很不一般的神秘女人,正是她极大地激发了薛定谔的灵感,使得他在之后的一年内,接连不断地发表了六篇关于量子力学的主要论文, 并提出了著名的薛定谔方程。因此,在享受量子力学带给我们辉煌灿烂的科技成果的今天,我们或许也应该感谢这位神秘女郎的贡献。

薛定谔在《生命是什么》一书中也认真探讨过男女关系,认为女人是红色,男人是紫色,男人创造的灵感来自于女人。也许这是薛定谔当年的真实感受,也由此而传为美谈。但如今我们从物理学和历史的角度来看待这个问题,薛定谔 1926 年奠定了量子力学基础的几篇论文,是建立在雄厚的经典力学和数学基础之上的,绝不可能仅仅是某个神秘女友激发了薛定谔天才的想象力和灵感的结果。

争论和思考

综上所述,薛定谔建立了微观世界中粒子的波函数所遵循的薛定谔方程。但后来,薛定谔不同意哥本哈根派对波函数的解释,因而设计了“薛定谔的猫”的思想实验。用薛定谔自己的话来说,他要用这个恶魔般的装置让人们闻之色变。薛定谔说:“看吧,如果你们将波函数解释成粒子的几率波的话,就会导致一个既死又活的猫的荒谬结论。因此,几率波的说法是站不住脚的!”

干货!两万字长文带你走近神秘的量子纠缠

叠加态引发的思考

这只猫的确令人毛骨悚然,相关的争论一直持续到今天。连当今伟大的物理学家霍金也曾经愤愤地说:“ 当我听说薛定谔的猫的时候,我就想跑去拿枪,干脆一枪把猫打死![6]”

在宏观世界中,既死又活的猫不可能存在,但许多实验都已经证实了微观世界中叠加态的存在。总之,通过“薛定谔的猫”,我们认识了叠加态,以及被测量时叠加态的坍缩。叠加态的存在,是量子力学最大的奥秘,是量子现象给人以神秘感的根源,是我们了解量子力学的关键。

量子论的大论战

现在,让我们再回到玻尔和爱因斯坦有关量子理论的争论——以下简称为“玻爱之争”。

两人都是伟大的物理学家,对量子理论的发展都做出了杰出的贡献。分别因为解决光电效应问题和量子化原子模型而获得 1921 年、1922 年的诺贝尔物理学奖。爱因斯坦和玻尔的争论主要是有关量子力学的理论基础及哲学思想方面。实际上,也正因为这两位大师的不断论战,量子力学才在辩论中发展成熟起来。爱因斯坦一直对量子论及玻尔一派的解释持怀疑态度,他提出了一个又一个的思想实验,企图证明量子论及正统诠释的不完备性和荒谬性,直到他们逝世之后,这场论战仍在物理学界继续进行。但遗憾的是,直到目前为止,每次的实验结果似乎并没有站在爱因斯坦这位伟人这边。

这场有关量子论的大论战搅得它的创立者们夜不能寐、寝食难安,当年在世的物理学家几乎全都被牵扯其中。学术界的纷争能促进学术的进步,但也能损害学者们的生理和心理健康,甚至还有物理学家因此而自杀的。

1906 年,著名的奥地利物理学家玻尔兹曼在意大利度假的旅店里上吊自杀。玻尔兹曼性格孤僻内向,关注他的“原子论”的基础,厌烦马赫等不同见解者的诘难。尽管这场论战与量子论之争拉不上多少关系,并且最后是以玻尔兹曼的取胜而告终。但是,长长的辩论过程使玻尔兹曼精神烦躁,不能自拔,痛苦与日俱增,最后只能用自杀来解脱心中的一切烦恼。玻耳兹曼的死使学者们震惊,也在一定程度上影响了荷兰物理学家埃伦费斯特 (Paul Ehrenfest,1880—1933)。后者曾经师从玻耳兹曼,是爱因斯坦的好友,其“浸渐假说”与玻尔的对应原理,是在经典物理学和量子力学之间架起的两座桥梁。埃伦费斯特于 1933 年 9 月25 日饮弹自尽,他的死震动了物理界。

第一次交锋

玻爱两人的第一次交锋是 1927 年的第五届索尔维会议。那可能算是一场前无古人后无来者的物理学界群英会。在这次会议的历史照片中,列出来的鼎鼎大名使你不能不吃惊。在这次与会的 29 人中,有 17人获得了诺贝尔物理学奖。

干货!两万字长文带你走近神秘的量子纠缠

1927年第五届索尔维会议照片 (来自网络)

索尔维是一位对科学感兴趣的实业家,因发明了一种制碱法而致富。据说索尔维财大气粗后自信心倍增,发明了一种与物理实验和理论都扯不上关系的有关引力和物质的荒谬理论。尽管物理学家们对他的理论不屑一顾,但对他所举办的学术会议却是趋之若鹜。因此,当年那几届索尔维会议就变成了量子论的大型研讨会,也就是玻爱之争的重要战场。玻爱之争有三个回合值得一提,前两次起始于 1927 年和 1930 年的索尔维会议,第三次则是第七届索尔维会议后的 1935 年。

「上帝不掷骰子」

爱因斯坦对量子论的质疑要点有三个方面,也就是爱因斯坦始终坚持的经典哲学思想和因果观念:一个完备的物理理论应该具有确定性、实在性和局域性。

爱因斯坦认为,量子论中的海森伯原理违背了确定性。根据海森伯的测不准原理,一对共轭变量(比如:动量和位置,能量和时间)是不能同时准确测量的:当准确测定一个粒子在此刻的速度时,就无法测准其在此刻的位置;如果要想准确测定位置,就不可能准确地测量速度。因此他说:“上帝不掷骰子!”

这儿所谓的“上帝掷骰子”,不同于人掷骰子。在当今的科学技术领域中,统计学和概率学是常用的数学工具。人们应用统计方法来预测气候的变化,股市的走向,物种的繁衍,人心的向背。几乎在各门学科中,都离不开“概率”这个词。然而,我们在这些情况下应用概率的规律,是由于我们掌握的信息不够,或者是没有必要知道那么多。比如说,当人向上丢出一枚硬币,再用手接住时,硬币的朝向似乎是随机的,可能朝上,可能朝下。但这种随机性是因为硬币运动不易控制,从而使我们不了解硬币从手中飞出去时的详细信息。如果我们对硬币飞出时的受力情况知道得一清二楚,就完全可以预知它掉下来时的方向,因为硬币实际上遵从的是完全确定的宏观力学规律。而量子论不同于此,量子论中的随机性是本质的。换句话说:人掷骰子,是外表的或然;上帝掷骰子,是本质的或然。

所谓实在性,则类似于我们熟知的唯物主义,认为物质世界的存在不依赖于观察手段。月亮实实在在地挂在天上,不管我们看它还是不看它。局域性的意思则是说,在互相远离的两个地点,不可能有瞬时的超距作用。

各路英雄纷纷亮相

1927年10 月,那是布鲁塞尔鲜花盛开、红叶飘零的季节,著名的第五届索尔维会议在此召开。这次会议群贤毕至,济济一堂。我们似乎从这张老照片众多闪光的名字中,看到了量子论两大派别各路英雄一个个生动的形象:每个人都身怀特技,带着自己的独门法宝,斗志昂扬、精神抖擞,应邀而来。

玻尔高举着他的“ 氢原子模型”,玻恩口口声声念叨着“ 概率”,德布罗意骑着他的“波”,康普顿西装上印着“效应”二字,狄拉克夹着一个“算符”,薛定谔挎着他的“方程”,身后还藏了一只不死不活的“猫”,布拉格手提“晶体结构”模型,海森伯和他的同窗好友泡利形影不离,两人分别握着“测不准原理”和“不相容原理”,埃伦费斯特也紧握他的“浸渐原理”大招牌。

最后登场的爱因斯坦,当时四十多岁,还没有修成像后来那种一头白发乱飘的仙风道骨形象。不过,他举着划时代的两面相对论大旗,头顶光电效应的光环。因此,他洋洋洒洒跨辈份地坐到了第一排老一辈无产阶级革命家的中间。那儿有一位德高望重的白发老太太,镭和钋的发现者居里夫人。另外,我们还看到了好些别的大师们的丰功伟绩:洛伦兹的“变换”、普朗克的“常数”、朗之万的“原子论”、威耳逊的“云雾室”,等等。

尽管人人都身怀绝技,各自都有不同的独门功夫,但大家心中都藏着一个谜团——对于他们共同哺育而发展壮大起来的新理论——量子力学,应该如何解释和诠释呢?诸位大师们对此莫衷一是,众说纷纭。

两派人马旗鼓相当:玻尔的哥本哈根学派人数多一些,但爱因斯坦这边有薛定谔和德布罗意,三个重量级人物,不可小觑。

最后,就正式会议来说,这是量子论一次异常成功的大会,玻尔掌门的哥本哈根派和它对量子论的解释大获全胜。闭幕式上,爱因斯坦一直在旁边按兵不动,沉默静坐,直到玻尔结束了关于“互补原理”的演讲后,他才突然发动攻势:“很抱歉,我没有深入研究过量子力学,不过,我还是愿意谈谈一般性的看法。”然后,爱因斯坦用一个关于α 射线粒子的例子表示了对玻尔等学者发言的质疑,不过,他当时的发言相当温和。但是,在正式会议结束之后几天的讨论中,火药味就要浓多了。根据海森伯的回忆,常常是在早餐的时候,爱因斯坦设想出一个巧妙的思想实验,以为可以难倒玻尔,但到了晚餐桌上,玻尔就想出了招数,一次又一次化解了爱因斯坦的攻势。当然,到最后,谁也没有说服谁。

第二个回合

1930 年秋,第六届索尔维会议在布鲁塞尔召开。早有准备的爱因斯坦在会上向玻尔提出了他的著名的思想实验——“光子盒”。实验的装置是一个一侧有一个小洞的盒子,洞口有一块挡板,里面放了一只能控制挡板开关的机械钟。小盒里装有一定数量的辐射物质。这只钟能在某一时刻将小洞打开,放出一个光子来。这样,它跑出的时间就可精确地测量出来了。同时,小盒悬挂在弹簧秤上,小盒所减少的质量,也即光子的质量便可测得,然后利用质能关系 E=mc2便可得到能量的损失。这样,时间和能量都同时测准了,由此可以说明测不准关系是不成立的,玻尔一派的观点是不对的。

干货!两万字长文带你走近神秘的量子纠缠

光子盒实验装置剖面图

描述完了他的光子盒实验后,爱因斯坦看着哑口无言、搔头抓耳的玻尔,心中暗暗得意。不想好梦不长,只过了一个夜晚,第二天,玻尔居然“以其人之道,还治其人之身”,找到了一段最精彩的说辞,用爱因斯坦自己的广义相对论理论,戏剧性地指出了爱因斯坦这一思想实验的缺陷。

光子跑出后,挂在弹簧秤上的小盒质量变轻即会上移,根据广义相对论,如果时钟沿重力方向发生位移,它的快慢会发生变化,这样的话,那个小盒里机械钟读出的时间就会因为这个光子的跑出而有所改变。换言之,用这种装置,如果要测定光子的能量,就不能够精确控制光子逸出的时刻。因此,玻尔居然用广义相对论理论中的红移公式,推出了能量和时间遵循的测不准关系!

无论如何,尽管爱因斯坦当时被回击得目瞪口呆,却仍然没有被说服。不过,他自此之后,不得不有所退让,承认了玻尔对量子力学的解释不存在逻辑上的缺陷。“量子论也许是自洽的”,他说,“但却至少是不完备的”。因为他认为,一个完备的物理理论应该具有确定性、实在性和局域性!

玻尔虽然机敏地用广义相对论的理论回击了爱因斯坦“光子盒”模型的挑战,自己心中却仍然不是十分踏实,自觉辩论中有些投机取巧的嫌疑!从经典的广义相对论出发,是应该不可能得到量子力学测不准原理的,这其中许多疑问仍然有待澄清。况且,谁知道爱因斯坦下一次又会想出些什么新花招呢?玻尔口中不停地念着:“爱因斯坦,爱因斯坦……爱因斯坦,爱因斯坦……”,心中无比感慨。玻尔对这第二个回合的论战始终耿耿于怀,直到1962年去世。据说,他的工作室黑板上还一直留着当年爱因斯坦那个光子盒的图。

第三次论战

玻爱之争的第三个回合,就到了 1935 年,这场论战达到了它的顶峰。这就是我们下一篇要讲到的 EPR 佯谬,它将引领我们进入本文的主题:量子纠缠。

玻尔和爱因斯坦的第三次争论,本来应该发生在 1933 年的第七届索尔维会议上。但是,爱因斯坦未能出席这次会议,他被纳粹赶出了欧洲,刚刚风尘仆仆地到达美国,被聘为普林斯顿高等研究院教授。德布罗意和薛定谔出席了会议,但薛定谔没见到爱因斯坦暂时不想发言,德布罗意也不想单独与人辩论。这令玻尔大大松了一口气,会议上哥本哈根派唱独角戏,看起来量子论已经根基牢靠,论战似乎尘埃落定。

然而,爱因斯坦毕竟是个伟人,不是那么容易服输的。尽管他当时因战争而流离失所,未能参加索尔维会议,尽管到普林斯顿之后他的妻子身染重病,到了知天命年龄的爱因斯坦,仍然十分关注量子力学的进展,并更加深入地思考量子理论涉及的哲学问题。

笔者的老师和论文委员会成员之一的约翰·惠勒 (John Archibald Wheeler),曾经在一次聚会上,对笔者说过一段有关爱因斯坦的故事:1948 年,普林斯顿的费曼在惠勒的指导下,完成了他的博士论文,他以惠勒早期的一个想法为基础,开创了用路径积分来表述量子力学的方法。当年,惠勒曾经将费曼的论文交给爱因斯坦看,并对爱因斯坦说:“ 这个工作不错,对吧?” 又问爱因斯坦:“现在,你该相信量子论的正确性了吧!” 爱因斯坦沉思了好一会儿,脸色有些灰暗,怏怏不快地说:“也许我有些什么地方弄错了。不过,我仍旧不相信老头子 (上帝) 会掷骰子!”

EPR 佯谬

再回到玻尔和爱因斯坦的第三次论战。当年的爱因斯坦,初来乍到普林斯顿,语言尚且生疏,生活不甚顺畅,因此,他不堪孤身独战,找了两个合作者,构成了一个被物理学家们称为不是十分恰当的组合。Boris Podolsky 和Nathan Rosen 是爱因斯坦在普林斯顿高等研究院的助手。1935 年3 月,Physics Review 杂志上发表了他们和爱因斯坦共同署名的 EPR 论文。文章中描述了一个佯谬,之后,人们就以署名的三位物理学家名字的第一个字母命名,称为“EPR佯谬” [7]。

爱因斯坦等人在文中构想了一个思想实验,意为在现实中无法做,或难以做到,而使用想象力进行的实验。EPR 原文中使用粒子的坐标和动量来描述由此思想实验而导致的所谓 EPR 佯谬,其数学表述非常复杂。后来,博姆用电子自旋来描述,就简洁易懂多了。EPR 论文中涉及到“量子纠缠态”的概念。这个名词当时还尚未被爱因斯坦等3 位作者采用。“纠缠”的名字是薛定谔在 EPR 论文之后不久,得意洋洋地牵出他那只可怖的猫时候,第一次提到的[8]。因此,我们首先解释一下,何谓量子纠缠态?

量子纠缠态

读者应该还记得我们解释过的“量子叠加态”。叠加态这个概念一直贯穿本文中,从薛定谔的猫,到双缝实验中似乎同时通过两条缝的单个电子,不都是这个匪夷所思的“叠加态”在作怪吗?不过,之前对叠加态的解释,都是针对一个粒子而言的。如果把叠加态的概念用于两个以上粒子的系统,就更产生出来一些怪之又怪的现象,那些古怪行为的专利,就该归功于既叠加又纠缠的“量子纠缠态”。

比如,我们考虑一个两粒子的量子系统。两个粒子组成的系统,不外乎两种情况:一种是两个粒子互不干扰和耦合,各自遵循自已的规律。这种情况下,整个系统的状态可以写成两个粒子的状态的乘积。而每个粒子的状态,一般来说,就自旋而言,是自旋 |上> 和自旋 |下> 按一定概率分布构成的叠加态。这种情况下的系统,可看作是由两个独立的单粒子组成,除了分别都具有叠加态的性质之外,没有产生什么有意思的新东西。另一类情况则非常有意思,那就是当两个粒子互相关联,整个系统的状态无法写成两个粒子状态乘积的时候。我们借用“纠缠”这个词来描述两个粒子之间的互相关联。也就是说,这种情形下,两个粒子的叠加态“互相纠缠”在一起,使得测量结果互相影响,即使是当两个粒子分开到很远很远的距离之时,这种似乎能瞬间互相影响的“纠缠”照样存在。

何谓 EPR?

爱因斯坦等三人在他们提出的思想实验中,描述了一个不稳定的大粒子衰变成两个小粒子 (A 和B) 的情况,两个小粒子分别向相反的两个方向飞出去。假设粒子有两种可能的自旋,分别是 |上> 和 |下>,那么,如果粒子 A 的自旋为 |上>,粒子 B 的自旋便一定是 |下>,才能保持总体守恒,反之亦然。这时我们说,这两个粒子构成了量子纠缠态。

两个粒子 A 和 B 朝相反方向飞奔,它们相距越来越远,越来越远……。根据守恒定律,无论相距多远,它们应该永远是 |上>|下> 关联的。两边分别由观察者 Alice 和 Bob 对两个粒子进行测量。根据量子力学的说法,只要Alice 和Bob 还没有进行测量,每一个粒子都应该处于某种叠加态,比如说,|上>、|下> 各为 50% 概率的叠加态。然后,如果 Alice 对 A 进行测量,A 的叠加态便在一瞬间坍缩了,比如,坍缩成了 |上>。现在,问题就来了:既然 Alice 已经测量到 A 为 |上>,因为守恒的缘故,B 就一定要为 |下>。