赫茨普龙-罗素图(赫罗图)是表示恒星温度或颜色与光度之间关系的图。炽热明亮的蓝巨星位于左上方,而比较冷且暗的红矮星分布在图的右下角。大多数恒星,包括太阳都在从左上至右下的一条对角线上,这条对角线被称为主星序,主星序上的恒星称为主序星,都处于一生中的氢燃烧阶段。当恒星核的氢烧完后,它们就离开主序,开始氦燃烧而成为红巨星。最终红巨星坍缩,温度上升,成为白矮星。根据恒星的温度或颜色可把恒星分成以字母O、B、A、F、G、K、M表示的七种类型。O型是热的蓝星,M型是较冷的红星。
红巨星的氦核最终还是会坍缩并升温。当温度达到摄氏一千万度时,将引发又一轮的核聚变。在这一轮聚变中,氦原子核代替了氢聚变成碳和氧原子核。聚变发生后产生的辐射压将使恒星暂时停止坍缩,处于暂时的平稳状态。这时的恒星叫做“红超巨星”。但是如果某颗恒星的质量是太阳的十至二十倍,在这一阶段会出现一个不稳定期,恒星会出现周期性的膨胀和收缩、变热和变冷。这样的恒星称为“造父变星”。
有限的氦的燃烧只是短暂地延缓了恒星死期的到来。像太阳那样大的恒星的氦大约只能燃烧十亿年左右。氦用完后,质量小于太阳十倍的恒星便已经到了生命的尽头,那时恒星的核将再度开始收缩,剩余的氦又开始燃烧,致使它的外壳再度膨胀。恒星将向外层空间抛射物质,形成一个“行星状星云”,而其星核再次坍缩。当核的密度达到每立方厘米一百千克时,其中的电子被挤压到了不能再紧密的地步,坍缩也就停止了。等到这个垂死的恒星将它的外壳全部抛出后,它的核就裸露出来了。这个核是炽热的,温度约为摄氏两万五千度,但体积却特别小,只有地球那么大,所以我们称之为“白矮星”。由于宇宙中一半以上的恒量拥有伴星,如果其中的一颗成了白矮星,另一颗是主序星,那么白矮星就会从它的伴星中曳出物质。物质在白矮星周围聚集,达到很高的温度发生核聚变而发生强烈的辐射,我们称这种现象为“新星”。而这样的双星系统叫做“密近双星”。
这是位于天兔座的行星状星云IC418,距地球约两千光年
这是距地球约八千光年的船底座Eta星,它是一颗垂死的恒星,抛射出大量的尘埃和气体
距地球约两千光年的行星状星云NGC3123的中心是一对双星。形成这个星云的是其中那颗小星
位于距地球约七千光年的球状星团M4中的白矮星
密近双星模拟图。右上是一颗白矮星,它从左下的伴星表面不断吸取物质,并在自身周围形成一个物质盘
新星Cygni1992爆发后形成的环。环主要由炽热的气体组成
距地球约六千光年的多次爆发的新星T Pyxidis。其周围有一个尘埃积吸盘
1987年爆发于大麦哲伦云中的超新星1987a。它有三个环状结构,而不是天文学家原先以为应有的沙漏状星云
著名的蟹状星云。它是1054年夏天爆发的一颗超新星的遗迹,被当时的中国天文学家观测到。星云中央有一颗很小的脉冲星
一颗于三千多年前爆发的超新星的遗迹,位于大麦哲伦云
邻近的星系M51中的超新星1994I。M51是一个旋涡星系,距地球约两千万光年
科学家发现三个在数十亿年前爆发的超新星,并据此推测出现在的宇宙膨胀速率比宇宙诞生时要慢
如果恒星的质量超过太阳的十倍以上,在经历氦燃烧的阶段后,由于它的星核质量大,所以它的温度和压力也更大,因此将转入又一轮的聚变反应中:由碳聚变成氖和镁。然后又是硅和硫,最终硅成为铁。每一阶段都遵遁着相似的规律,每一阶段产生的余烬又是下一轮聚变的燃料,每一阶段的聚变都要求更高的温度。恒星像一个巨大的洋葱头那样一层层地进行着热核反应,直至核心温度达到约摄氏二十八亿度,硅聚变成最终产物——铁。在这一阶段的每个过程都较短,一个质量是太阳一百倍的恒星大约只需一天时间就能将其核心的硅全部消耗掉。
铁生成后,由于不可能再燃烧生成更重的元素,所以恒星中心很快发生坍缩,在几秒钟内体积缩小一百倍,密度达到每立方厘米十克。这时电子和中子被压缩得非常紧密,以致相互结合形成中子和中微子(一种不带电,质量几乎为零的基本粒子)。同时,恒星的外层因失去了支撑而快速向内塌落,高速撞击到中央的核上,并转换成巨大的动能以冲击波的形式向外传播,把恒星内的致密物质抛出。中微子也缓慢地向外扩散,逸出恒星的外层。这就是我们称之为“超新星爆发”的极其壮观的天文现象。超新星爆发时将在很短的时间内释放出极其耀眼的光芒,其亮度和整个星系相当。超新星爆发后大约要经过一年的时间才会渐渐暗淡下来。一九八七年爆发的著名的超新星1987a位于邻近的不规则星系大麦哲伦云,科学家们为此大为振奋。现在,天文学家们正满怀激情地等待着银河系中下一个超新星的出现。
超新星爆发后将遗留下来的星云称为“超新星遗迹”;剩余的那个已经死亡的恒星核根据质量的大小或者成为一颗中子星,或者成为一个黑洞。
