我的位置:

金准产业研究 低轨通信卫星,开启6G通信时代,带动千亿规模市场

发布人:管理员

前言

“6G=5G+卫星网络”,卫星通信应用前景广阔。

2017年11月,英国电信集团(BT)首席网络架构师Neil McRae对6G通信进行了展望,他认为6G将是“5G+卫星网络”,在5G的基础上集成卫星网络来实现全球覆盖,并有望在2025年得到商用。

2018年11月,我国科技部拟将“与5G/6G融合的卫星通信技术研究与原理验证”课题,列入国家重点研发计划“宽带通信和新型网络”重点专项中,说明我国也已经认识到卫星通信在未来通信领域的重要性,表明卫星通信将在5G/6G通信时代有广阔的应用前景。

一、低轨通信卫星概述

1.1卫星通信技术

卫星通信技术(Satellite communication technology)是一种利用人造地球卫星作为中继站来转发无线电波而进行的两个或多个终端之间的通信。自20世纪90年代以来,电子信息技术的迅猛发展推动了卫星移动通信的进步。卫星通信具有覆盖范围广、通信容量大、传输质量好、组网方便迅速、便于实现全球无缝链接等众多优点,被认为是建立全球个人通信必不可少的一种重要手段。

按照卫星轨道高度的不同,通信卫星可以分为低轨通信卫星(LEO)、中轨通信卫星(MEO)和高轨地球同步通信卫星(GEO)。LEO卫星轨道高度500km~2000km,MEO卫星轨道高度2000km~36000km,GEO卫星轨道高度为36000km。

低轨道带来的好处是,一方面卫星的轨道高度低,使得传输延时短,路径损耗小,多个卫星组成的星座可以实现真正的全球覆盖,频率复用更有效;另一方面蜂窝通信、多址、点波束、频率复用等技术也为低轨道卫星移动通信提供了技术保障。因此,LEO系统被认为是最有应用前景的卫星移动通信技术之一。


1.2低轨卫星通信系统基本构成

低轨卫星通信系统主要由空间段、用户段、地面段、公用及专用网络四部分等组成。在若干个轨道平面上布置多颗卫星,由通信链路将多个轨道平面上的卫星联结起来。整个星座如同结构上连成一体的大型平台,在地球表面形成蜂窝状服务小区,服务区内用户至少被一颗卫星覆盖,用户可以随时接入系统。低轨卫星通信可以在用户段直接与单一地面终端连接,也可以通过地面关口站与地面公共网络连接。


1.3低轨卫星通信应用时机已经成熟

(1)低轨通信卫星固有特点决定其更适合现代通信

地球同步轨道卫星在通信、电视转播等方面的应用已经趋于成熟,它的缺点越来越明显,如体积大、重量大,需要大型助推火箭,发射准备时间长,只有一个轨道面,可容纳卫星数量有限,不能覆盖极地地区,距离地球遥远,通信延迟长,波束覆盖区大,频谱利用率低,容量有限,终端发射功率大,不易小型化等。相对GEO卫星通信系统,低轨卫星通信系统有诸多优势,对用户而言,通信时延缩短,数据传输率提高,终端重量、体积、发射功率与普通陆地移动通信终端相差无几,还可以与陆地通信系统兼容,真正做到全球无缝接入。对运营商而言,卫星体积小、重量轻,利用现代发射技术可以一箭双星/多星同时发射入轨,系统频谱利用率高,容量增大,因此,随着卫星制造技术的进步和市场需求的逐渐旺盛,低轨卫星通信系统的发展方兴未艾。

(2)低轨通信卫星网络主要技术问题已得到有效解决

低轨卫星通信系统也存在固有的缺点,如需要卫星数量较多,由此带来地面控制、维护系统比较复杂,对通信而言,影响较大的问题是波束切换和星间切换。低轨卫星相对地球高速运动,使得终端在通信过程中需要频繁的切换到其他波束或卫星上才能继续通话,以铱星系统为例,其最小切换时间间隔10.3秒,平均切换时间间隔277.7秒。实现切换需要一系列信令操作过程,频繁的切换加重了系统的信令负荷。切换越频繁,切换失败的概率越大,铱星系统在运行初期的切换成功率只有85%,后来经过改进达到92~98%,与陆地移动通信系统的切换掉话率不高于5×10的指标相比相差甚远。切换产生掉线的主要原因是切换发生时,早期低轨卫星通信系统的带宽资源不能满足切换呼叫最低的带宽要求,但随着近二十年来通信技术、微电子技术的飞速发展,通信系统信号处理能力、通信带宽不断提升,从目前仍在运行的铱星二代、全球星等低轨卫星通信系统使用情况来看,困扰早期铱星系统的掉线率高等技术问题已经得到有效解决,为低轨卫星通信的普及应用扫清了障碍。

二、早期低轨通信卫星系统生不逢时,不断升级换代

卫星移动通信始于20世纪70年代,早期的通信卫星较为简单,由于当时对卫星移动通信信道的理解不够深入,以及移动终端小型化的技术也不成熟,因此,只能支持用于车辆和飞行器的通信,不能支持大量的小型终端用户。在随后的20年中,很多研究机构和大学对卫星移动通信信道开展了大量的实验和研究。为了实现全球通信,以及对市场的乐观估计,相继有多个低轨卫星移动通信系统被开发出来并投入运行。其中最有代表性的低轨卫星移动通信系统是铱星系统(Iridium)和全球星系统(Global star)系统。

2.1铱星系统

(1)系统方案

铱星系统是美国摩托罗拉公司提出的一种利用低轨道卫星群实现全球卫星移动通信的方案。铱星系统的原始设计是由77颗小型卫星,均匀有序地分布于离地面785km上空的7个轨道平面上,通过微波链路形成全球连接网络。因为其与铱原子的外层电子分布状况有一定的类似,故取名为铱星系统,后期为减少投资规模,简化结构以及增强与其他LEO系统的竞争能力,摩托罗拉公司将其卫星数降低到66颗,轨道平面降至6个圆形极地轨道,每条极地轨道上的卫星仍为11颗,轨道高度改为765KM,卫星直径为1.2m,高度为2.3m,重量为386.2kg,寿命为5~8年。

(2)技术缺陷和成本过高导致破产

铱星系统耗资约50亿美元,1990年6月首次公布,1990年12月向美国FCC提出许可证申请,在1992年9月得到FCC的许可证。当时铱系统是设计方案中最为完整、具体,进展也很快,是十分有前景的方案,但系统仍存在不足,一是技术方面,受当时设备性能制约,系统切换掉话率高达15%,严重影响通话质量,并且数据传输速率仅有2.4kb/s,二是成本方面,与GSM等系统终端相比,暴露出业务收费高、有地区差异、手机价格高等问题,导致1998年底才投入运行,之后公司于2000年左右就宣告破产。

(3)新铱星公司

价值50亿美元的铱星系统被新的铱星公司(Iridium Satellite LLC)以2500万美元收购,并于2001年3月28日由新的铱卫星公司重新提供服务。他们在市场定位、经营策略、增加业务种类、增多用户层面、降低手机价格、增加终端种类以及推行与主要电信供应商合作的发展战略等诸多方面进行了重大的调整,并付之实施,取得了卓有成效的业绩,并且发射了补充卫星,2006年在轨卫星数达到78颗,为20多个国家提供紧急救援、机要通信等服务力。

(4)铱星二代系统

新铱星公司于2007年提出铱星二代(Iridium Next)计划,该计划同样由66颗卫星组成,此外还有6颗规定冗余卫星,以及9座地面冗余。铱星二代保持了与第一代同样的星座构型,主要是做了能力升级与一些新业务的拓展。Iridium Next的前70颗卫星原计划由SpaceX在2015年至2017年之间,通过7次Falcon9火箭发射,发射合同总价值4.92亿美元。最后两颗卫星将分别单独发射。目前,SpaceX已完成8次发射,将75颗卫星送入预定轨道。Iridium Next移动用户的最高数据速率可达128kbps,数据用户可达1.5Mbps,Ka频段固定站不低于8Mbps,Iridium Next主要瞄准IP宽带网络化和载荷能力的可扩展、可升级,这些能力使得它能够适应未来空间信息应用的复杂需求,但对于当前日益增多的移动互联网需求,尤其是5G通讯时代的来临,铱星二代系统数据传输能力仍显不足。


2.2全球星系统

(1)系统初期建设

全球星(Global star)系统是美国LQSS(Loral Qualcomm Satellite Service)公司于1991

年6月向美国联邦通信委员会(FCC)提出的低轨卫星移动通信系统。根据计划,全球星系统计划在1997年底发射12~16颗卫星,并于1998年发射其他的卫星。全球星(Global star)系统采用低成本、高可靠的系统设计,一个关口站只需要35万美元。手持机的价格只相当于目前广泛使用的蜂窝手机的价格,故其服务对象更适合为边远地区蜂窝电话用户、漫游用户、外国旅行者,以及希望低成本扩充通信的国家和政府通信网和专用网。按目前全球星(Global star)系统合作伙伴的分布情况来看,它可以为33个国家提供服务。

(2)系统升级换代

为了适应移动终端对数据传输量不断提高的需求,全球星系统于2010年开始建设Globalstar-2系统,并随着2013年2月6日最后6颗星的成功发射,从而完成了由24颗卫星组成的低轨移动卫星通信星座的部署。Globalstar-2卫星质量为700kg,采用2片3联太阳能帆板,初始功率为2.2kW,末级功率为1.7kW。卫星轨道高度为1414km,轨道倾角52°。卫星采用简单、高效、可靠性强的“弯管式”转发器设计,提供的服务包括一键通与广播、先进的短报文能力(MSS)、移动视频、GEO定位、多频段与多模手机、GPS集成数据等。

Globalstar-2卫星系统推出了基于卫星的WiFi服务,也叫Sat-Fi。Sat-Fi路由器与卫星相连形成热点,用户直接通过智能手机安装APP连接后就能上网,可以实现话音、邮件、短消息等业务,一台Sat-Fi设备最多允许8名用户同时接入,可提供最大发射功率为100mW,有效覆盖范围为约30.5m。


三、国外公司加紧布局新一带低轨卫星通信系统

在2000年左右,铱星系统、全球星系统都面临GSM手机强有力的竞争,在使用费用、终端成本、数据传输速率等方面都不占优势的情况下难以普及,只能应用于紧急救援、海事通信、军用通信等特殊领域。但在20年后的今天情况已经有了很大改观,航天科技和电子信息技术的进步降低了卫星研制、量产和发射的成本,而卫星通信资费的降低和数据传输速率的提升又催生出无时无刻的互联网接入和大数据需求,面对广阔的市场需求,低轨卫星通信的复兴也自然水到渠成。

3.1抢占30亿“未连接市场”,多家公司积极布局低轨卫星通信

据Internet World Stats统计,截至2017年6月,全球互联网普及率为51.7%,意味着全球仍有一半(约30亿)的人口未实现互联网连接。这些地面信息系统无法覆盖的地方,将是卫星通信有待开垦的一块新大陆。而随着5G时代的到来,太空互联网将会显现出更大的优势。

为打开这30亿“未连接市场”,Google、Facebook等都已提早布局。2010年初,谷歌联合汇丰银行与欧洲有线电视运营商Liberty Global发起“O3b计划”,O3b的原意是“Other3billion”,指的是目前仍旧不能够上网的30亿人,该计划进展迟缓,其项目团队重新组建了One Web公司。2015年,Google向SpaceX公司投资10亿美元,其目的之一便是打造太空互联网,同年SpaceX推出Star link项目,计划发射约12000颗卫星组建低轨卫星通信系统。

2017年Facebook成立子公司Point View Tech LLC,投入数百万美元研发实验卫星,该卫星名为Athena,将比Star link卫星网络传输数据速度快10倍。除了互联网巨头,包括波音、空客、三星等公司都正积极地开展低轨通信卫星系统的研发工作。

2019年4月,亚马逊推出Kuiper项目,计划发射3236颗低轨通信卫星,从而在全球范围内提供快速且低延迟的互联网接入服务。


3.2 One Web系统1、基本情况

One Web吸引了空客、高通、维珍集团、波音和可口可乐等公司参与投资,软银也已经投资了15亿美元,公司目前已经累计获得34亿美元融资。

One Web的第一代低轨星座设计方案,包含648颗在轨卫星与234颗备份卫星,总数达882颗。这些卫星将被均匀放置在不同的极地轨道面上,距离地面1200km左右。卫星高速运动,不同卫星交替出现在上空,保障某区域的信号覆盖。公司正在考虑增加卫星数量,总数达到近2000颗。开始运行后,One Web星座不仅能覆盖美国,亦能覆盖全球还没有连接互联网的农村边远地区。One Web的目标是,到2022年初步建成低轨卫星互联网系统,到2027年建立健全的、覆盖全球的低轨卫星通信系统,为每个移动终端提供约50Mbps速率的互联网接入服务。


2019年2月,One Web首批6颗互联网卫星成功升空,One Web将在2019年秋天开始发射更多卫星。最终,One Web计划将另外1000余颗卫星送入不同高度的太空中,该公司卫星总数有望达到1980颗。

“流水线”助力卫星批量化生产

为了尽快完成组网,One Web引入了汽车制造的概念,将卫星各系统模组化,在生产线大量使用自动化设备。在此模式下,One Web的“卫星工厂”每周能生产16颗卫星,年产量达到648颗卫星。批量化生产可以降低卫星的生产成本,2015年时设定的目标是使每颗通信卫星的造价降低至50万美元。

3.3 Star link系统1、规模宏大的“星链”计划

One Web主要竞争对手是马斯克的SpaceX公司。2015年,SpaceX向美国联邦通信委员会提交“星链”(Star link)计划,计划部署12000颗卫星,其中第一阶段发射4425颗轨道高度1100~1300km的中轨道卫星,第二阶段发射7518颗高度不超过346km的低轨道卫星。SpaceX预计2025年最终完成12000颗卫星的部署,为地球上的用户提供至少1Gbps的宽带服务和最高可达23Gbps的超高速宽带网络,这一计划预计成本超过100亿美元。这些卫星均采用标准产品化设计,且用同一款火箭猎鹰9号发射。

目前围绕地球运行的现役卫星共有1400余颗,估计还有2600多颗卫星已经不再工作,只是漂浮在太空之中,加上这部分已经退役的卫星,人类已发射的卫星总数约为4000多颗。因此,SpaceX计划发射的通信卫星数量将超过人类已发射卫星总数。

SpaceX的第一阶段卫星发射计划分为两步,首先向1150km轨道高度发射1600颗卫星,然后再发射2825颗卫星并将它们分别安置在1110km、1130km、1275km和1325km这四个轨道高度上。4425颗卫星会在83个轨道平面上运行,能提供类似光纤的网络速度,且覆盖面积大大提升。此外,整套系统具有很大的弹性,可以针对特定的地区,动态地集中信号到需要的地方,从而提供高质量的网络服务。





卫星数量过多,计划面临调整

2018年2月22号,猎鹰9号搭载Star link的两颗低轨道试验卫星Microsat2-A/-B成功发射。其重型猎鹰火箭每次发射起步价是9000万美元,其最大有效载荷16.8吨,此次搭载的Microsat-2a和Microsat-2b小型互联网试验卫星的重量为386公斤(不包括太阳能电池板)。

以此计算,按照最理想的状态(不考虑卫星太阳能电池板的重量和体积),重型猎鹰火箭每次发射最多可以携带43.5颗卫星(几乎是不可能的),要将12000颗类似的卫星部署完毕,重型猎鹰火箭需要发射276次左右,仅发射成本就接近250亿美元。

因此,SpaceX也在不断评估系统成本以及密集卫星群对于近地空间造成的影响。2018年11月,SpaceX拟对Star link计划作出修订,修订后,第一阶段待发射的卫星总数有可能减少至1584颗。

四、我国低轨通信卫星发展进入战略机遇期

4.1世界各国轨道频谱资源竞争激烈

轨道和频谱是通信卫星能够正常运行的先决条件,单颗低轨卫星覆盖范围小,必须增加数量以实现全球覆盖,因此,面对有限的轨道、频谱资源,One Web、SpaceX、亚马逊等行业巨头,以及Google、Facebook等互联网企业均加入了低轨通信卫星竞争阵营,纷纷推出自己的低轨通信卫星建造计划,甚至SpaceX的Star link计划卫星数量达到惊人的12000颗,未免有“跑马圈地”的意味,目前,国外已经公布的低轨通信卫星方案中,卫星总数量约为23892颗,卫星轨道高度主要集中在1000~1500km之间,频段主要集中在Ka、Ku和V频段,在轨道高度十分范围有限、频段高度集中的情况下,卫星轨道和频谱的竞争将愈加激烈。由于轨道和频谱在国际电信联盟的有效占有时间有限,不如期发射卫星,原有轨道和频谱将失效,因此,金准产业研究团队预计下一阶段各家公司将抢先发射卫星,以实际占有轨道和频谱,轨道和频谱的争夺将愈演愈烈。

4.2中国力量加入低轨通信卫星竞争阵营

(1)我国现有卫星通信移动宽带服务能力亟待加强我国目前的卫星通信系统主要有卫星广播通信、卫星宽带互联网和卫星移动通信三种类型。在卫星广播通信领域,主要建设发展中星、亚太系列通信广播卫星系统,在轨运行的民

用通信卫星约15颗,通信业务基本实现亚洲、欧洲、非洲、太平洋等区域覆盖,在全球卫星空间段运营服务商排名第六位。

在卫星宽带互联网领域,我国高通量宽带卫星发展刚刚起步,整体技术水平、系统容量和服务能力与国外先进卫星系统尚有差距。2017年发射的首颗高通量Ka宽带卫星“中星16号”,容量达到20Gbps,主要面向远程教育、医疗、机载和船舶通信、应急通信等领域的互联网接入,不能面向个人移动用户。

在卫星移动通信领域,2016年我国发射的“天通一号”01星是我国自主建设的首颗移动通信卫星,支持最低1.2Kbps电路域话音、最高分组域384Kbps的数据业务,移动宽带服务能力较为薄弱,与One Web约50Mbps的数据接入能力相比有明显差距,难以满足当前地面移动通信宽带服务需求。

(2)低轨通信卫星网络建设提上日程

我国疆域辽阔,自然地形复杂。在面对偏远山区的自然村落时,与地面光缆相比,“从天上”解决成本更低,并且能够同时解决海上通信问题。2016年12月的《十三五国家信息化规划》中也明确提及“通过移动蜂窝、光纤、低轨卫星等多种方式,完善边远地区及贫困地区的网络覆盖。”在此背景下,据新浪网报道,中国航天科技和中国航天科工两大集团都启动了各自的低轨通信项目“鸿雁”和“虹云”星座计划,航天两大集团成为了我国低轨通信卫星领域的“国家队”。

在民间投资方面,据《华尔街日报》报道,2018年底中国已有约80家太空技术初创企业投入这一领域,太空已成中国商界的“新边疆”。以银河航天为代表的民间资本低轨卫星公司,2018年连续完成A轮三次融资,投资方包括顺为资本、晨兴资本、IDG资本、高榕资本、源码资本、君联资本等,公司估值已达到35亿元。按照银河航天徐鸣的估算,如果要让全球每一个角落都能联网,投入低轨道通信卫星的成本,有机会降到基站建设成本的1%。

4.3“鸿雁”系统

(1)方案组成

“鸿雁”全球卫星通信系统由中国航天科技集团公司提出,该系统将由300颗低轨道小卫星及全球数据业务处理中心组成,具有全天候、全时段及在复杂地形条件下的实时双向通信能力,可为用户提供全球实时数据通信和综合信息服务。“鸿雁”星座首期投资约200亿元,是我国首个国家级的、投资规模最大的、具有里程碑意义的商业航天项目,将实现“沟通连接万物、全球永不失联”。

项目创新运营高效的商业模式,聚集全社会资源,打造覆盖芯片、终端、系统集成、运营服务及人才培养等环节的完整产业链条,创新卫星及运载火箭规模化研制模式和流程,培育新经济增长点,将带动上下游超千亿元产值规模。

(2)首发星成功入轨

据新华网报道,2018年12月29日,长征二号丁运载火箭成功将“鸿雁”星座首颗试验星送入预定轨道。首发星是“鸿雁”星座的试验星,由深圳航天东方红海特卫星有限公司制造,采用了该公司研制的CAST5高性价比微小卫星平台,该星具有L/Ka频段的通信载荷、导航增强载荷、航空监视载荷,可实现“鸿雁”星座关键技术在轨试验,同时研制了地面系统与终端,卫星入轨后可陆续开展卫星移动通信、物联网、热点信息广播、导航增强、航空监视等功能的试验验证,为后续的“鸿雁”星座的全面建设及运营提供有力支撑。

“鸿雁”星座还有一个重要应用就是提供航空数据业务,可支持飞机前舱的安全通信业务,为航空器追踪及应急处理提供可靠的通信保障,同时支持后舱宽带互联网接入服务。中国航天科技集团目前已与中国民航局签订合作协议,共同开展“鸿雁”星座系统空管应用研究及机载宽带通信服务合作。

4.4“虹云”系统

(1)方案组成

“虹云”星座是中国航天科工大力推动商业航天发展的“五云一车”(飞云、快云、行云、虹云、腾云和飞行列车)项目之一,旨在构建覆盖全球的低轨宽带通信卫星系统,计划发射156颗卫星,它们在距离地面1000km的轨道上组网运行,以天基互联网接入能力为基础,融合低轨导航增强、多样化遥感,实现通、导、遥的信息一体化,构建一个星载宽带全球移动互联网络,实现网络无差别的全球覆盖。

整个“虹云”工程分为三个阶段建设,第一阶段,2018年底发射首星;第二阶段,“十三五”末即2020年底前,发射4颗业务试验星;第三阶段,到“十四五”中期即2023年左右,发射完成全部156颗卫星,初步完成天地融合系统建设,具备全面运营条件。

(2)首颗技术验证卫星“武汉”号顺利发射

据新浪网报道,2018年12月22日,“虹云”工程首星在酒泉卫星发射中心成功发射,进入预定轨道,标志着中国打造天基互联网也迈出了实质性的第一步。该星由中国航天科工在武汉的国家航天产业基地生产,该基地将成为具备卫星批产能力的智能化卫星生产线,以支撑2022年左右整个星座卫星的批量生产,为“虹云”工程后续星座组网建设奠定基础。

“虹云”工程首星首次将毫米波相控阵技术应用于低轨宽带通信卫星,能够利用动态波束实现更加灵活的业务模式。除通信主载荷外,虹云工程首星还承载了光谱测温仪和3S(AIS/ADS-B/DCS)载荷,将实现高层大气温度探测和船舶自动识别系统(AIS)信息、飞机广播式自动相关监视(ADS-B)信息和传感器数据信息采集(DCS),实现通、导、遥的信息一体化,可广泛应用于科学研究、环境、海事、空管等领域。

五、未来我国低轨卫星通信产业规模将超千亿

5.1航天产业前景广阔,我国通信卫星产业增长迅速

(1)世界航天产业稳健发展

据欧洲咨询公司统计数据,2015年全球航天产业总规模约为3353亿美元,卫星产业总规模约为2400亿美元,其中卫星通信产业的总体规模约为1485亿美元,同比上一年增长了3.6%,约占卫星产业收入的62%,占航天产业收入的44.3%,说明卫星通信产业是航天产业的重要组成部分。其中通信卫星制造收入56亿美元,通信卫星发射收入19亿美元,通信卫星运营收入125亿美元,卫星通信服务收入1285亿美元。

根据美林银行的预测,航天业的规模将从2016年的3500亿美元增长至2046年的超过2.7万亿美元,年复合增长率约为7%,其中相当一部分增长将源自新型低轨通信卫星。

(2)通信卫星是推动卫星产业发展的关键动力

传统卫星通信产业主要由政府驱动,主要是政府出资、政府使用,各类卫星通信系统属于国有的天基基础设施。然而,过去十年,商业航天产业吸引了超过130亿美元的投资,其中1/5来自于投资公司和私营企业,其中半数以上都来自卫星通信产业。充满活力的私营企业期待的不仅仅是资本回报,更加看重充满希望的发展前景。

2011~2015年,各类应用卫星年均发射90余