我的位置:

金准人工智能 L4级自动驾驶技术及应用场景研究报告

发布人:管理员

前言

人工智能、物联网的快速发展,加速了在各行业场景应用落地,其中也催生了自动驾驶行业的发展。自动驾驶技术的出现颠覆了人们对汽车行业的传统认识,逐步由传统代步工具向智能化、物联网发展,成为整个城市交通生态系统重要的一环,各大以整车厂商为代表的传统汽车厂商也加快了自动化、智能化升级,开始L3、L4、L5级自动驾驶生态布局,传统势力基于以往产品研发模式逐步实现车辆智能化升级,另外,各类新兴技术科技公司也开始抢先布局,科技公司则是通过深度学习、高精度传感器直接开发可以实现L4级别自动驾驶的系统。

目前从技术上来讲已经基本上具备了实现L4级自动驾驶的能力,主要是通过高精度传感器+深度学习实现车辆对于周围环境中障碍物的探测,加以识别判断并进行动作决策等,但是由于需要实现L4级自动驾驶的硬件设备如小型高精度激光雷达、算法嵌入式的计算平台等设备还不够成熟,因此当前整套L4级设备还显得庞大笨重且造价昂贵,很像早期实验室中的大型计算机。

由于深度学习只有通过大量数据训练才可以实现对相似目标和道路情况的识别和判断,而由于城市道路交通情况过于复杂,当前L4级自动驾驶系统还难以应付城市开放道路上的的载客运输作业,自动驾驶系统比较适合应用于封闭园区、或点到点线路上的货物运输应用场景,如:港口集装箱运输、干线物流运输、矿区、工业区运输作业等。

未来随着车载技术的进一步成熟以及新技术的应用(如车联网、高精度地图等)。L4级自动驾驶将会最终进入乘用车平台和城市道路环境,自动驾驶汽车在城市环境下最好的应用场景是共享出行领域,预计这将会彻底改变消费者的拥/用车习惯,对传统私家车市场形成巨大冲击,轿车厂商因此会转型布局出行服务市场。

一、自动驾驶行业宏观情况概述

1.1自动驾驶的定义和技术分层

从L4级自动驾驶开始实现系统对驾驶员的替代。自动驾驶是指让汽车自己拥有 环境感知 、 路径规划 并且 自主实现车辆控制 的技术,也就是用电子技术控制汽车进行的仿人驾驶或是自动驾驶。美国汽车工程师协会(SAE)根据系统对于车辆操控任务的把控程度,将自动驾驶技术分为L0-L5,系统在L1~L3级主要起辅助功能;当到达L4级,车辆驾驶将全部交给系统,而L4、L5的区别在于特定场景和全场景应用。本篇报告我们将主要论述L4级自动驾驶系统技术、成本和商业化应用场景。

 

1.2自动驾驶产业链

自动驾驶创造机会吸引行业外企业共同参与技术体系研发。自动驾驶涉及到极为复杂的多产业融合,除了传统整车制造以外还涉及到了大量新兴技术,如:人工智能、大数据、物联网等,由于传统厂商难以短时间内形成相关技术研发能力,因此这给予了行业外相关技术企业进入这一巨大新兴市场的绝佳机会。除了新型高精度传感器(Lidar)等Tier2厂商外,人工智能创业公司着手开发自动驾驶算法以及针对特定或通用场景的整套系统解决方案;而互联网企业基于其在数据、资金、行业所拥有的强大综合实力,希望为未来出行领域开发L4、L5平台级自动驾驶系统;传统厂商OEMs、Tier1s也看到了自动驾驶巨大的商业机会,除了通过开发ADAS模块,使其现有产品逐渐获得L1~L3级自动驾驶能力以外,其也通过自建,整体收购的形式组建自己的自动驾驶研发团队,目标是开发适应未来的完全无人驾驶产品。

 

1.3传统厂商自动驾驶布局

整车厂商通过加装ADAS模块逐步实现高级别自动驾驶。

在本文中,金准人工智能专家主要探讨的是L4级自动驾驶技术及相关的应用场景,想要实现L4级自动驾驶,需要实现车辆在特定场景的运行过程中能够彻底的摆脱驾驶员而独立完成驾驶任务,这对于传感器、数据、计算平台以至于整体系统的性能、冗余度以及可靠性都提出了极高的要求。当前能够实现L4级的高性能的传感器和处理器成本高昂,限制了其在乘用车产品上的应用。而目前已经实现商业化应用的自动驾驶系统产品,主要是主机厂商(OEMs)和一级供应商(Tier1s)在现有的车型上通过添加高级辅助驾驶系统(ADAS),使其获得L1~L3级部分自动驾驶能力。

 

虽然目前在自动驾驶技术上还未取得突破性的创新,大多厂商的技术研发也停留在L2-L4级的道路上,但是不少机构预测2025年将会进入L4级自动驾驶时代,不少的传统汽车厂商也给出了各自自动驾驶汽车的量产时间表。下面我们就来盘点下这些传统汽车大厂的自动驾驶技术达到了哪种等级。

1.3.1奥迪:L3级自动驾驶汽车已量产上市

 

2017年年底,全新一代奥迪A8正式全球首发,该车最吸引人的不是靓丽的外观设计,而是搭载了全新的L3级自动驾驶系统(AI traffic jam pilot),全车共有12个超声波传感器、4个全景摄像头、1个前置摄像头、4个中程雷达、1个红外摄像机,作为全球首款搭载L3级自动驾驶系统的汽车,可谓看创了自动驾驶技术研发的新时代。目前国内的自动驾驶法规还未发布,所以在国内买到的奥迪A8并未搭载L3级自动驾驶系统,这点比较遗憾。

1.3.2奔驰:2020年之前实现L3级自动驾驶

奔驰辅助驾驶系统。

作为全球最有历史的汽车厂商,奔驰一直在汽车技术创新方面走在了最前列,目前奔驰正在研发L3级自动驾驶技术,该技术将使车辆在复杂的道路上行驶时,不需要人为干预,目前的S级车型只支持L2级自动驾驶技术,将在2020年前直接升级,最新E级轿车已经搭载DrivePilot技术,目前奔驰和博世进行合作,计划在2020年之前实现旗下大部分车型的自动驾驶。

1.3.3通用:2020年达到L4级自动驾驶并实现量产

 

Super Cruise(超级巡航)系统

 

作为技术排名第一的车企,通用汽车在自动驾驶研发方面非常的激进和大胆,Cruise和Strobe作为旗下的两大王牌,让通用在自动驾驶研发方面有了底气,所以L4级自动驾驶汽车的量产只是时间上的问题,新一代Super Cruise(超级巡航)系统凯迪拉克CT6已经早已上市,虽然目前只能达到L2级。

1.3.4福特:2020年制造首批自动驾驶汽车

 

福特在自动驾驶方面的态度相对于其他厂商来说非常的低调,对于研发自动驾驶量产汽车,福特更愿意推出完全自动化驾驶技术的汽车共享服务,作为汽车界佛系代表,“福特相信,开发自动驾驶汽车,技术不是一切,它还需要赢得消费者和部署城市及相关业务的信赖。”

1.3.5雷诺-日产:2020年实现在城市内自动驾驶

 

ProPILOT系统

日产和雷诺在1999年结盟,在自动驾驶技术研发方面,ProPILOT系统成为了首个推出的自动驾驶技术产品,而且,雷诺-日产把自动驾驶技术分成了四个步骤来解决,第一步为高速公路上保持当前单车道自动驾驶,第二步将其扩展为高速公路上的多车道自动驾驶,第三步将自动驾驶技术应用到城市路况,第四步实现完全无人驾驶的汽车,汽车完全自动驾驶,无需人工干预。

虽然,目前自动驾驶技术已经实现L3级,但是对于想要实现L4级或者L5级自动驾驶,还有很长的路要走,应用地域的差异、系统安全、法规政策不完善,诸多问题摆在了自动驾驶研发者面前,作为汽车以后发展的大方向,自动驾驶可以提高交通效率,降低行驶风险等,而作为用户的我们也多了一个出行选择。

1.4新兴势力自动驾驶布局

通过深度学习算法和高精度传感器实现彻底的无人驾驶。

新兴势力包括互联网厂商和科技创业公司(许多人员来自于互联网企业研究机构),主要开发在特定区域内实现完全无人驾驶的无人驾驶技术(L4~L5)。科技公司相较于传统厂商来说优势在于其对于深度学习、神经网络、大数据等先进技术的掌握上,但是其在硬件制造的经验却被传统厂商远远落下,Waymo(Google子公司)曾经主张自己造车,但在2015年后就放弃了这一想法转而与克莱斯勒、丰田等传统车企进行合作,大部分科技公司都采取相同路线。而传统厂商也通过投资收购科技创业团队为自己开发高级别自动驾驶系统(Cruise、Argo.ai)。

 

二、L4级自动驾驶技术及成本分析

自动驾驶系统可以分为感知层、决策层、执行层。

L4级自动驾驶系统实现在特定区域内对车辆操作的完全接管,系统需要实现:对周围障碍物的感知、车辆定位以及路径规划(2W1H),实现这些功能需要构建感知层、决策层、执行层这三个层面的技术架构,这三个技术层级分别代表着L4自动驾驶系统的眼和耳、大脑以及手脚。基于当前技术发展情况,我们在本部分主要讨论车辆内部所采用的一些传感器和计算单元。除了本地的传感器和处理器外,系统通过与外部车辆、设施进行信息交互,以及在高精度地图等辅助下可以获得更好的环境感知能力。

 

2.1自动驾驶环境感知传感器

2.1.1感知层需要对多种传感器进行融合以实现冗余

感知层主要是为自动驾驶系统获取外部行驶道路环境数据并帮助系统进行车辆定位,当前无人驾驶系统中代表性的传感器有激光雷达、摄像头、毫米波雷达、超声波雷达、GNSS/IMU等,由于其工作原理、技术特性各不相同决定其适用的应用场景各异,所以当前大部分车辆都是采用多种传感器相融合的方式以应对各种可能发生的情况,保证系统冗余。

 

2.1.2车用摄像头产品对比车用激光雷达产品更加成熟

激光雷达发展始于上世纪70年代,主要应用于军事、航空航天、测绘等领域,主要可以实现测距、定位、环境监测、以及动态、静态3D环境模型的构建。车用激光雷达起步较晚,目前产品不够成熟面临多重问题需要克服,如:能够搭载在车上的产品有效测距较短;产品固态化、小型化技术不够成熟,难以满足车辆要求;配套产业链尚未成熟,难以实现量产;由于产量少,产品售价高昂(Velodyne HDL-64售价高达于7.5万美元)。相比之下,由于在消费电子领域多年发展积累,摄像头在技术(成像效果、产品小型化)、产业链方面(成本控制)均比较成熟,而且在探测距离、价格方面亦有明显优势。最新开发的产品即使是在外部光线条件不佳的情况下也能够给出较好的成像输出。

 

2.1.3激光雷达未来将朝向小型化、电子化、固态化发展

虽然车用摄像头产品已经很成熟,但激光雷达在L3级以上的自动驾驶系统中是不可或缺的,因为激光雷达可以生成车辆周边环境的3D模型,为系统提供深度的环境数据,而且其在车辆定位中也扮演着重要的角色。

激光雷达能够发射的激光线束越多,其所能提供的探测精度和探测距离越好,但价格也越昂贵,如高速公路场景一般需要激光雷达能能够发射100线束以上;但针对一些中低速场景,也可采取多台低线束激光雷达以规避高昂的成本。

目前机械式激光雷达体积庞大、结构复杂,成本高昂,难以满足车辆使用要求,多家厂商正在着手研制半固态、固态激光雷达,以实现产品小型化、轻量化方向发展,随着未来相关技术进一步成熟,产品实现量产后,成本有望降至千元级别。

 

2.2自动驾驶计算决策层

2.2.1 IC公司和Tier1大力投资研发布局该领域

目前自动驾驶厂商传感器搭配基本趋同,而决定L4级自动驾驶落地的时间快慢更多的是取决于系统的决策环节,包括相关算法和计算平台。我们知道传感器每秒钟都会产生大量数据,计算平台需要有能力在极短时间内对大量的数据进行处理、分析并给车辆执行层下达操作指令以保证自动驾驶车辆的安全行驶。自动驾驶专用计算平台需要能够融合多种专用芯片和处理器,技术门槛极高,当前各大科技公司、Tier1都在布局该领域的技术研发,尤其是专业芯片环节具有极高的技术门槛,如Intel收购Altera(FPGA)、Movidius(视觉处理芯片)和Mobileye。目前由于产量少、造价高昂,当前一台计算平台的售价都在几万元甚至是十几万元,随着未来量产,成本有望降至万元以下。

 

2.2.2 L4级自动驾驶系统组建

目前行业并无统一的最优系统组建方案。

根据我们与行业内部分无人驾驶整体解决方案提供商的交流,目前各家厂商并无最优、唯一的L4级系统组建方案,每家在搭建自己的自动驾驶系统时都会根据不同的应用场景去选择不同的传感器配置方案,且由于当前上游厂商产品也处在快速迭代过程中,因此厂商也在尝试搭配选择不同的上游厂商所提供的产品。整体系统的造价和性能都在短时间内(季)快速迭代。

 

2.3自动驾驶计算执行层

当前L4级自动驾驶系统硬件成本高昂。

随着产业链成熟和产量提升硬件成本有望实现大幅下降。

目前大体上实现L4自动驾驶的硬件设备一般包含:6~12台摄像头、3~12台毫米波雷达、5台以内的激光雷达以及1~2台GNSS/IMU和1~2台计算平台(不同方案会选择不同侧重的传感器)。当前一整套L4级自动驾驶系统硬件成本还比较昂贵,整体基本在50万元左右甚至更高,而未来随着资本、研发的不断投入,自动驾驶产品逐渐落地、配套产业链逐渐成熟,预计整套系统硬件成本会在1~2年左右降至10~20万元,并最终有望控制在10万元以内。

 

三、L4级自动驾驶商业化应用分析

3.1 L4级自动驾驶商业化应用落地时间表

更容易在封闭园区、高速公路等简单道路环境中落地。

如我们之前所提到的,现在带有半自动驾驶功能(L3级以下)的产品已经有部分产品开始落地,而目前已知的L4级自动驾驶项目都还处在测试阶段,但18年、19年将会有多个应用于特定场景下的L4自动驾驶商业化项目逐步落地,从实现难度上来看,L4自动驾驶会率先出现在行驶条件相对简单、容错率较高的某些特定的封闭园区内,作为专用车或者某种商用车辆而使用;但在高速公路、城市一般道路环境下,由于道路复杂程度远高于封闭园区,在该环境下实现中驾驶商业化应用难度将会非常高。

 

3.2 L4级自动驾驶商业化应用场景分析

初期高投入换取后续人工费用降低和运营效率的提升。

L4级自动驾驶技术是指在确定的区域范围内实现系统对车辆的完全接管,在考虑适合L4级自动驾驶的商业化应用场景时,我们应该综合考虑以下因素:1、当前系统还不够聪明,难以应对过于复杂的道路环境;2、当前L4级自动驾驶硬件成本依然高昂,甚至比车辆自身成本还高,虽然未来成本有望下降,但依然会达到10万元左右,过高的成本导致其可能并不适合应用于私家车;3、L4级自动驾驶系统最大的优势就在于对驾驶员的完全替代,在考虑人力成本愈发高昂的当下,这可以节省大量的人力成本;4、系统在运营时间、运营效率等方面的表现都要优于人类驾驶员。因此在考虑L4级自动驾驶应用场景的时候需要综合考虑多方面因素。

 

金准人工智能专家认为L4级自动驾驶技术会率先在商用车领域尤其是道路运输行业率先实现商业化应用,主要原因有以下几点:

现有的自动驾驶技术还难以应对所有的道路环境和多样的驾驶任务,这就意味着环境越简单,需要考虑的道路上的变量越少,越容易实现技术应用。对比乘用车的应用环境,商业运输任务一般比较单一,往往是重复单一线路的点到点的运输作业,而且大部分的行驶环境是在高速公路或者封闭园区内,行驶环境中需要考量的变量较少,技术实现难度相对较低。

即使按照我们所期盼的1~2年系统成本可以下降至10~20万元,但这对于乘用车的消费人群来说还是太过于昂贵,但对于商业运输行业中的车队运营商来说20万元/台车的硬件投入是小于每台车/年的人力支出(假设:每台车需要2~3名司机,每名司机年薪在12万元);

除了节省人力成本以外,自动驾驶系统还可以提高运行效率,这包括了:

1)由于自动驾驶系统并不会疲劳,因此自动驾驶系统可以有效延长每日车辆的运营时间;

2)资料显示驾车习惯良好的司机可以节省13.3%的油料,由于自动驾驶技术比驾驶员拥有更好的环境感知能力以及对于单一任务的重复优化能力,预计系统也可以实现相同的省油效果;

3)此外,自动驾驶系统将会显著降低车祸发生概率,这将会降低保险费用或者因事故而导致的额外费用支出。

国内卡车有600万台左右,公路运输量占整体物流总量的78%,技术替代可以实现较大的商业价值,此外商用卡车的平均使用年限在5~6年,远远低于乘用车平均使用年限,因此实现技术替代的速度也会比较快。

3.2.1港区物流运输场景

我国港口经营面临由注重吞吐量转向提高服务质量。

港口是贸易往来中的重要节点,90%的进出口物资是通过海运并经港口实现的。目前全球前20大集装箱港口中中国占其中一半,前10大集装箱港口中有7个来自中国。随着集装箱船舶大型化、经营联盟化、班轮公司集中度急速提升这一趋势,对大型枢纽港提升码头服务能级、效率和质量、进一步优化资源配置、降低口岸综合成本等都提出了更高的要求;此外港口管理还面临廉价劳动力供给下降,随着工人健康意识的提升,新一代的劳务人员对于传统的工作模式变得难以适应,在未来港口将会面临着用工荒和用人成本大幅上升的情况。

港口的发展模式正在从传统的单纯注重通过能力和吞吐量,转为口岸效率、服务质量、综合物流、科技创新和可持续发展等方面的的全面竞争,港口管理集团在未来的发展过程中可通过引入无人岸桥、自动驾驶内集卡等设备以上发展目标。

 

L4级自动驾驶在港口自动化改造方案中比AGV更有竞争力。

目前国内多个港口探索通过自动化改造提升集装箱运输效率和服务质量,如上海港洋山四期全自动化港口,7个集装箱泊位,共集成了26台岸桥、120台轨道吊和超过130台AGV,设计目标将实现集装箱吞吐630万TEU/年,自动化改造提升了港口的工作效率,同时为港口节省了极大的人力成本。其中,洋山四期采用AGV代替了内集卡(内集卡主要是负责在岸桥(岸边起重机)和场桥(堆场起重机)之间的运输任务)。但AGV价格昂贵,且前期需要对车量运行区域预埋导航设备,如需路线更改,则需要重新铺装导航设备;相比之下由于L4自动驾驶卡车是基于成熟卡车平台建造,成本相对低廉,且由于其导航方式不需要对港区进行基建改造,相比起AGV方案有投入少、运行灵活、适用面广等优点。

 

细分市场空间有限但实现难度较小。

截至2017年末,全国共拥有生产码头27578个,万吨级及以上泊位2366个。在万吨及以上泊位中,集装箱泊位共328个。

以洋山港四期为例,其共有7个集装箱泊位,配置有130台AGV,若我们假设同样数量L4自动驾驶内集卡运输效能等同于AGV的话,则按该比例我们可以推算得出,全国现有集装箱码头数量若全部进行内集卡自动化升级改造则需要6091台内集卡,若每台的改装费用为20万元,则改装市场空间为12.18亿元。

在码头场景应用自动驾驶卡车难度较小,原因在于,码头场景相对封闭,运行区域规范整洁,适合于L4自动驾驶系统运行;虽然内集卡自动化升级需要一定成本,而国内的干线枢纽港出于在未来行业竞争中能够处于有利的竞争地位,有动力去对港口设施进行信息化、自动化升级改造;此外,自动驾驶内集卡可以节省8元/TEU的人力运输成本,并使得利润提升2.4倍。

 

3.2.2干线物流运输场景

中国公路物流运输行业集中度较低行业未来面临整合。

中国公路运输总量占整体物流总量的70~80%,地位及其重要,但物流成本占GDP总量的16%,远高于欧美发达国家10%的水平。中国物流行业存在着小、散、杂等特点,90%的承运商单位都是中小运营商,个体车队占63%,行业集中度低、竞争激烈、行业利润率低。未来随着政策趋严导致的行业门槛提升以及当市场达到一定的饱和度时,行业将会进入整合并将淘汰效率低的小企业,集中度进一步提升,在未来行业竞争中行业龙头企业胜出的关键因素是要能够满足客户多元化需求,为客户提供透明、高效、标准化、低成本的服务。

 

L4级自动驾驶技术助力综合物流龙头企业降低运营成本。

人工费用及运输成本费用是物流运输公司最主要的成本,如国内公路物流上市公司标的“德邦股份”2017年年报显示人工费用和运输费用分别占公司营业成本的45.12%和37.51%。尤其是人工费用,随着未来中国人口红利逐渐消失,社会劳动力成本进一步上升,将会对物流公司的利润水平造成巨大的压力。

L4级自动驾驶技术可以有效降低公路物流公司对于卡车司机的需求——尤其是在干线运输环节,根据我们的调研,业内人士认为人工成本因为自动驾驶技术的引入可以下降2/3,此外,预计自动驾驶技术在固定线路上可以实现最有效率的驾驶方式,并极大地降低交通事故的发生概率,因此燃油费用和保险费用也会因此相应下调,最终由于引入自动驾驶系统整体利润率可实现近3倍的增长。

 

干线运输行业规模庞大,但技术渗透尚需解决行业问题。

中国有近1500万辆公路货运车辆和3000万名货车司机,而当前自动驾驶技术比较适用于干线运输这一细分场景,主要原因在于干线运输行驶场景主要为高速公路,高速公路相比起城市主干道来说,行人、骑车人数量较少,复杂的道路路口、交通指示灯等设施相对较少,系统对道路上车辆行驶轨迹更好进行预测。因此,在测算市场规模上我们主要关注重型卡车

(干线运输)领域, 国内重卡保有量近600万辆,按比例推算对应司机数量应该在1200万名左右。假设每辆车的改装成本在20万元,则这是一个近1.2万亿的存量市场。

虽然干线物流运输拥有较大的市场空间,但是行业中所遗留的一些历史问题阻碍了自动驾驶技术的推行,如甩挂模式推行困难,单车在运货到站后到再装满货物离站往往需要等待1~2天;此外,自动驾驶汽车能否正式上路运行最终还要通过政府相关部门的审批。

 

3.2.3其他应用场景

当前L4级自动驾驶落地城市一般道路应用场景困难较大。

目前自动驾驶汽车进入城市一般道路应用场景难度还是比较大,即使是目前技术最领先的Waymo(MPD数据排名第一),在其测试的凤凰城地区也经常会有当地居民抱怨Waymo测试车在道路上的表现过于呆板。 如果想要自动驾驶汽车在城市场景应用,可以选择某些低速、固定线路的应用场景,如:1、固定区域低速场景:最后一公里低速物流车、道路清洁车等市政车辆;2、在开放道路固定线路上行驶的公交车,其类似于轨道交通车辆,运行线路固定,道路情况虽然比较复杂,但是车速不快,还可以采取在车辆外安装LED信息告示板主动向车辆周边的行人和车辆告知自动驾驶车辆的下一步动作而避免可能发生的事故。此外,载客相比起之前我们重点分析的载货场景,还需要考虑乘客的搭乘体验,这对车辆控制算法有更严格的要求,因此技术难度更大。

 

四、行业未来发展展望及风险分析

4.1 L4级自动驾驶市场走向成熟

当L4级自动驾驶进入乘用车平台时意味着行业高增长的到来。

如我们前文分析的,当前限于数据量、技术等因素的限制,短时间内L4自动驾驶主要的应用场景还是在封闭园区或点到点固定线路的物流运输作业上,主要是应用在商用车平台上,平台和应用场景对于技术的要求相对宽松。而随着技术及配套政策的进一步成熟,L4自动驾驶最终会进入乘用车平台,乘用车应用场景是2C市场,空间将远大于商